Factors That Control the Chemistry of the LOV Domain Photocycle
نویسندگان
چکیده
Algae, plants, bacteria and fungi contain Light-Oxygen-Voltage (LOV) domains that function as blue light sensors to control cellular responses to light. All LOV domains contain a bound flavin chromophore that is reduced upon photon absorption and forms a reversible, metastable covalent bond with a nearby cysteine residue. In Avena sativa LOV2 (AsLOV2), the photocycle is accompanied by an allosteric conformational change that activates the attached phototropin kinase in the full-length protein. Both the conformational change and formation of the cysteinyl-flavin adduct are stabilized by the reduction of the N5 atom in the flavin's isoalloxazine ring. In this study, we perform a mutational analysis to investigate the requirements for LOV2 to photocycle. We mutated all the residues that interact with the chromophore isoalloxazine ring to inert functional groups but none could fully inhibit the photocycle except those to the active-site cysteine. However, electronegative side chains in the vicinity of the chromophore accelerate the N5 deprotonation and the return to the dark state. Mutations to the N414 and Q513 residues identify a potential water gate and H₂O coordination sites. These residues affect the electronic nature of the chromophore and photocycle time by helping catalyze the N5 reduction leading to the completion of the photocycle. In addition, we demonstrate that dehydration leads to drastically slower photocycle times. Finally, to investigate the requirements of an active-site cysteine for photocycling, we moved the nearby cysteine to alternative locations and found that some variants can still photocycle. We propose a new model of the LOV domain photocycle that involves all of these components.
منابع مشابه
LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling
The Light-Oxygen-Voltage domain family of proteins is widespread in biology where they impart sensory responses to signal transduction domains. The small, light responsive LOV modules offer a novel platform for the construction of optogenetic tools. Currently, the design and implementation of these devices is partially hindered by a lack of understanding of how light drives allosteric changes i...
متن کاملShort LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms
Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however universal signal transduction pathways and photocycle mechanisms remain elusive. In particular, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only the photoresponsive LOV element without any obvious signal transduction domains. These sLOV proteins may be ideal models for LOV do...
متن کاملKinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis
A LOV (Light, Oxygen, or Voltage) domain containing blue-light photoreceptor ZEITLUPE (ZTL) directs circadian timing by degrading clock proteins in plants. Functions hinge upon allosteric differences coupled to the ZTL photocycle; however, structural and kinetic information was unavailable. Herein, we tune the ZTL photocycle over two orders of magnitude. These variants reveal that ZTL complexes...
متن کاملSwitching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine.
LOV (light-, oxygen- or voltage-sensitive) domains act as photosensory units of many prokaryotic and eukaryotic proteins. Upon blue light excitation they undergo a photocycle via the excited triplet state of their flavin chromophore yielding the flavin-cysteinyl adduct. Adduct formation is highly conserved among all LOV domains and constitutes the primary step of LOV domain signaling. But recen...
متن کاملWhen light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii.
Plants use sophisticated photosensing mechanisms to maximize their utilization of the available sunlight and to control developmental processes. The plant blue-light receptors of the Phot family mediate plant phototropism and contain two light, oxygen, and voltage (LOV)-sensitive domains as photoactive elements. Here, we report combined quantum mechanical/molecular mechanical simulations of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014